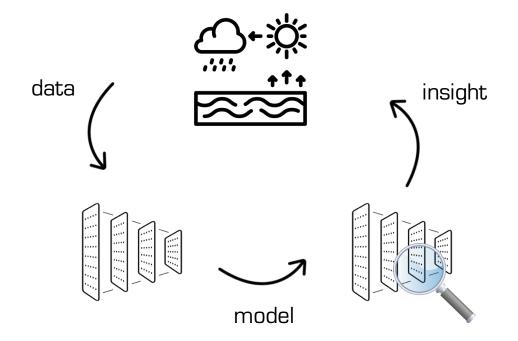
Winter School on Causality and Explainable AI

Uncovering Input-Target Associations with Explainable AI

Grégoire Montavon

22 October 2025

Two Distinct Uses of XAI



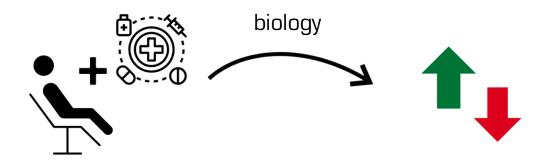
1. XAI for ML Auditing

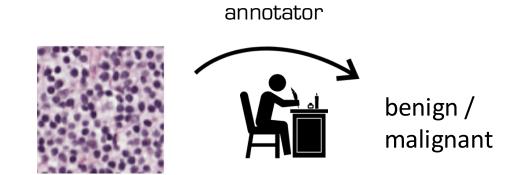
 Object of interest is the ML model. XAI is the tool.

2. Understanding

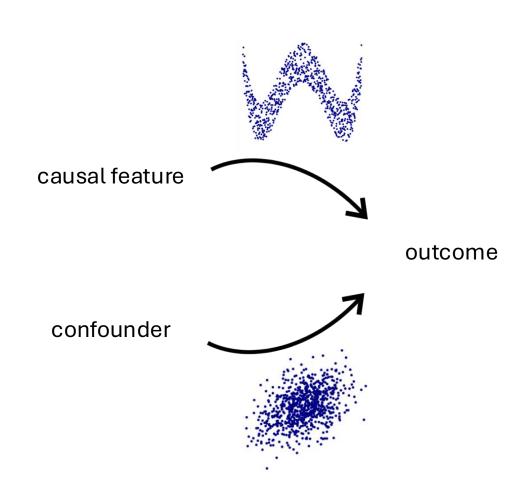
 Object of interest is the natural system or process. ML/XAI are the tools.

Examples of Systems of Interest

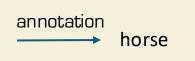




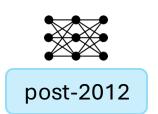
Hypothesis on Causal Features



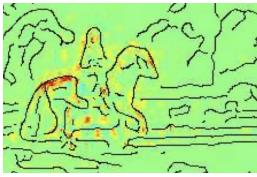
Empirical Evidence





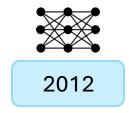


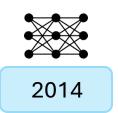
- limited data
- simple models
- weak correlates
- less generality

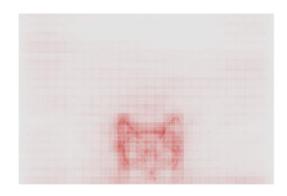


- big data
- complex models
- strong correlates
- more generality

Empirical Evidence



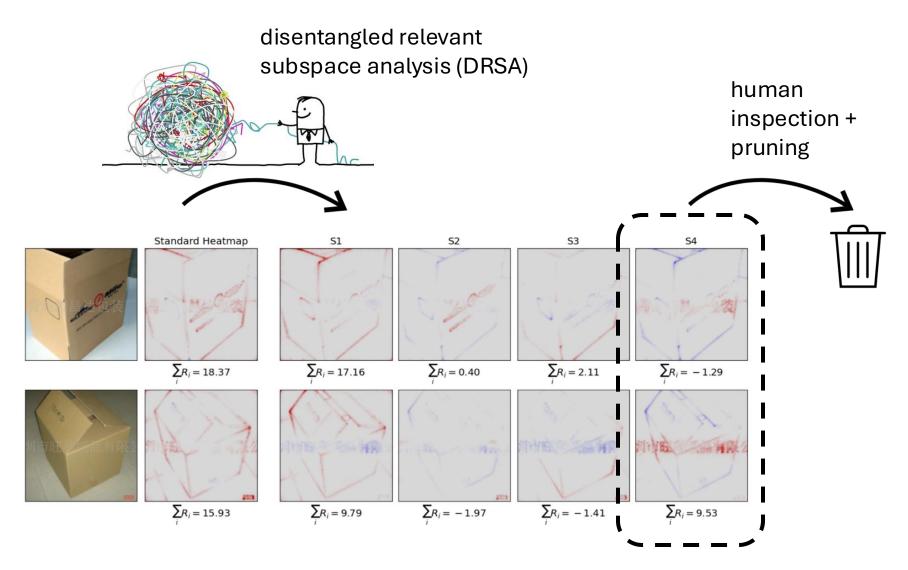




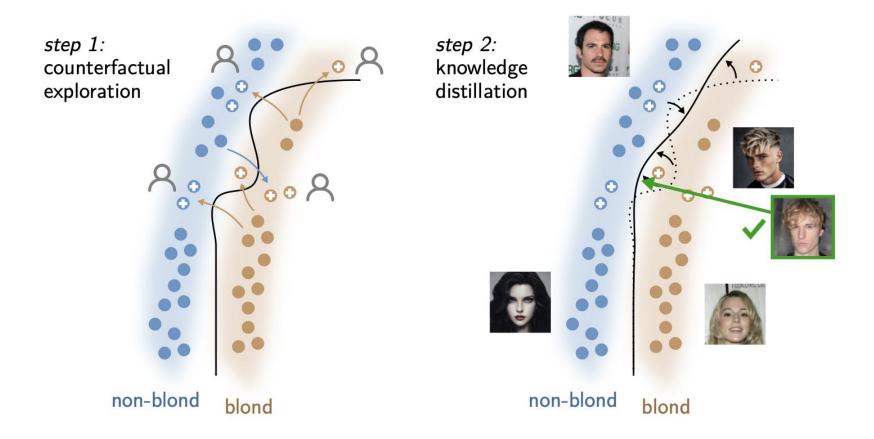
- limited data
- simple models
- weak correlates
- less generality

- big data
- complex models
- strong correlates
- more generality

Deconfounding Methods

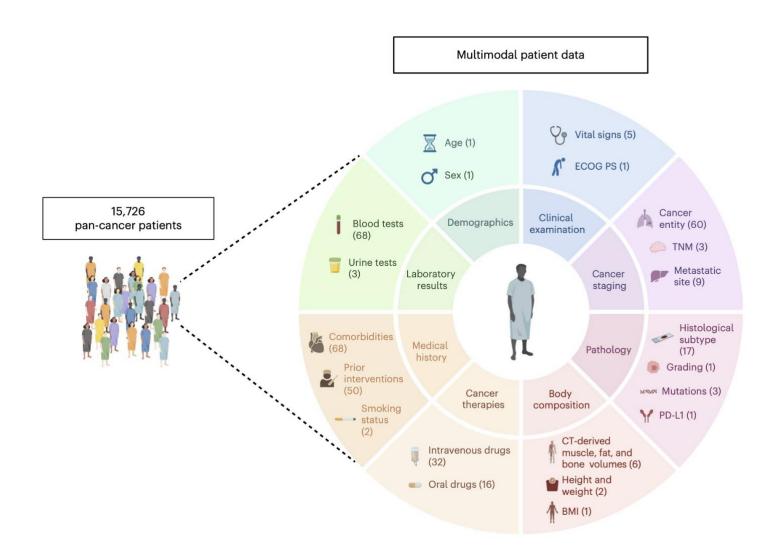


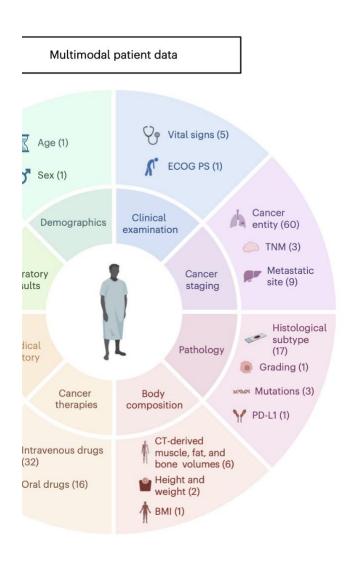
Deconfounding Methods

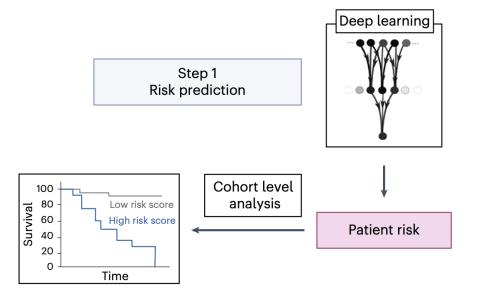


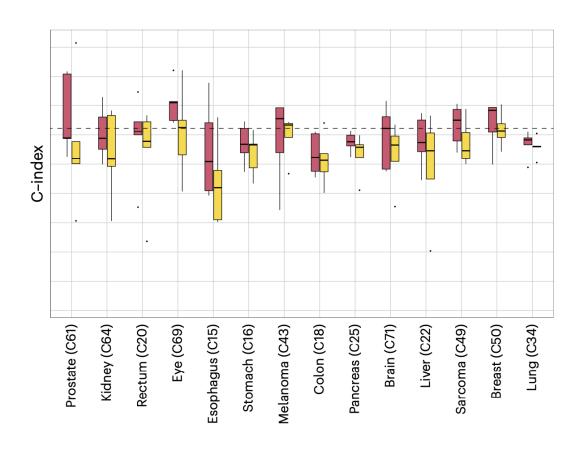
Trends in AI for Medicine

- Large datasets publicly available.
- State-of-the-art ML architectures (e.g. transformers, Mamba, etc.) being applied.
- Methods to detect/remove confounders being developed.









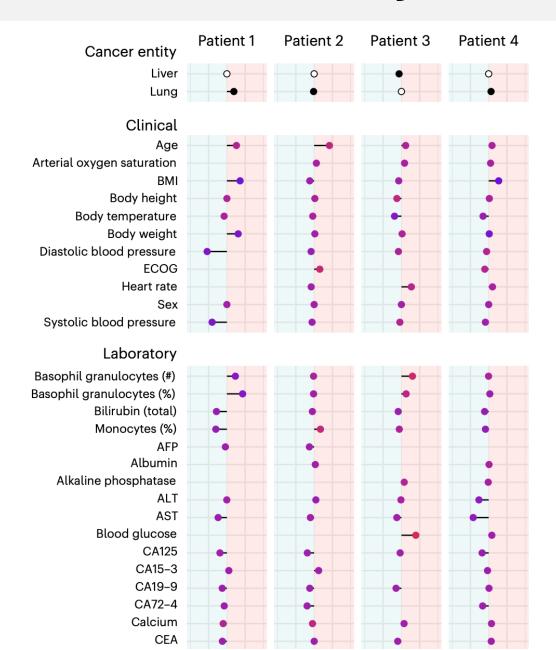
--- Average result

Training on

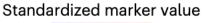
Pan-cancer

Specific cancer entity

Pan-cancer increases data and benefits from statistical regularities across cancers.



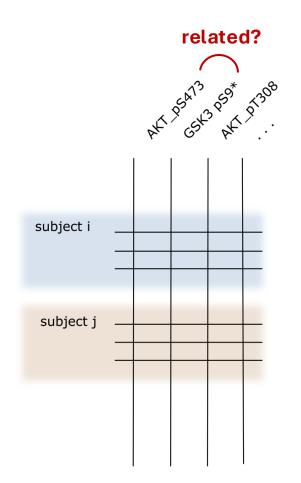




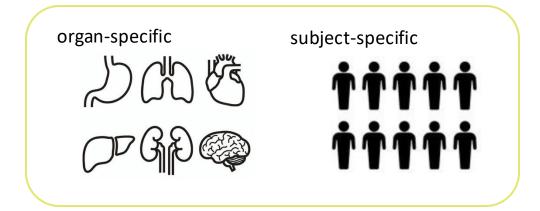
Deconfounding through

- High accuracy (large datasets + nonlinear model)
- Early stopping + input dropout

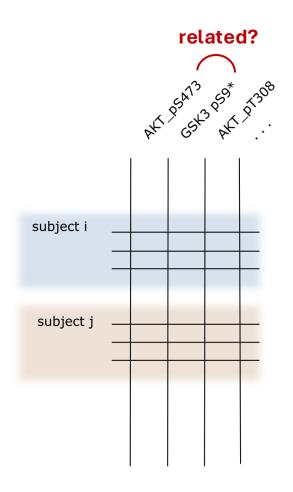
Part II



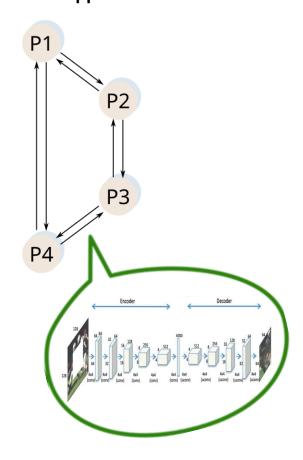
desiderata



classical correlations not suitable

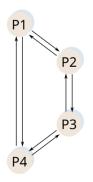


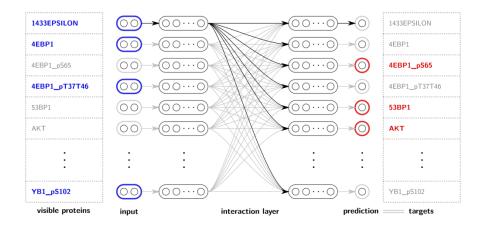
Unsupervised learning approach



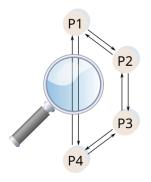
Unsupervised ML/XAI Approach

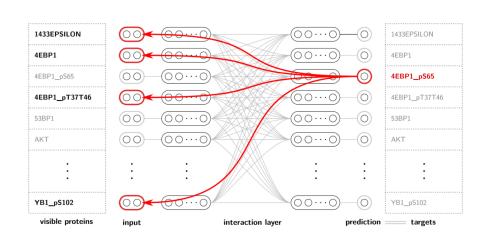
Step 1: Unsupervised learning





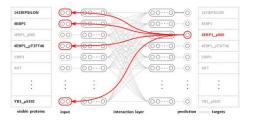
Step 2: Explainable AI

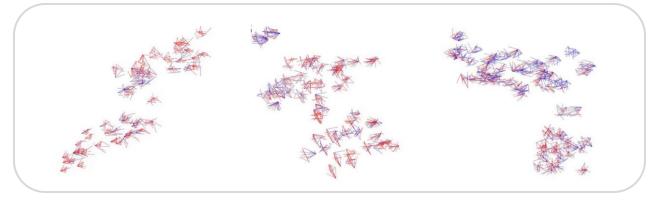




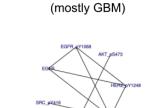
LRP (layer-wise relevance propagation)

our approach

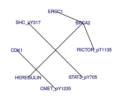




cluster aggregation



Cluster 4



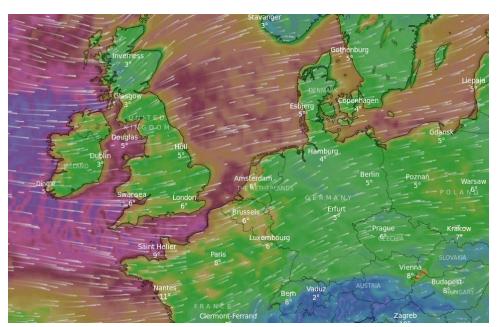
Cluster 7 (THCA)

full aggregation

- Among the 100 strongest median interactions (out of 10,731) uncovered by our ML/XAI approach, 56 interactions were described in the Reactome database.
- In comparison, GENIE3, one of the state-of-the-art methods for network prediction, captured 42 Reactome interactions with its highest 100 predictions.

Input-Uncertainty Associations

Part III



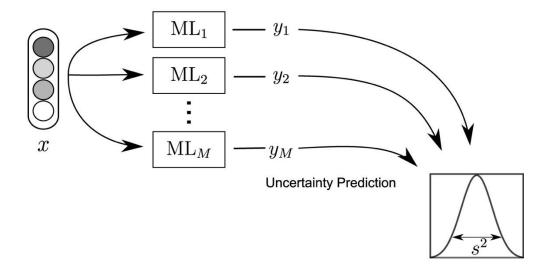
Storm Sabine 9-11 Feb 2020

- High volatility in electricity prices observed.
- What are the factors that drive price volatility?
- How can we model volatility?

Volatility as Uncertainty

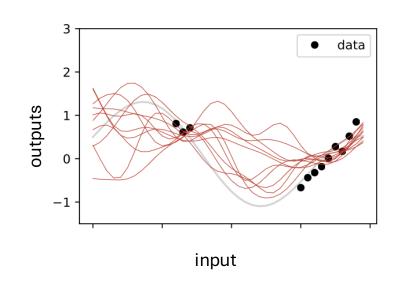
Ensemble-based ML model

$$x\mapsto Var\{y_1,\dots,y_M\}$$



Advantages:

- ✓ Positive-constrained
- ✓ Prior encoded that uncertainty should increase in unknown situations.



Explaining Uncertainty

Explanations of sums

$$\mathcal{E}\left\{\sum_{m}\alpha_{m}y_{m}\right\} = \sum_{i}\alpha_{m}\mathcal{E}\left\{y_{m}\right\}$$

Application to uncertainty

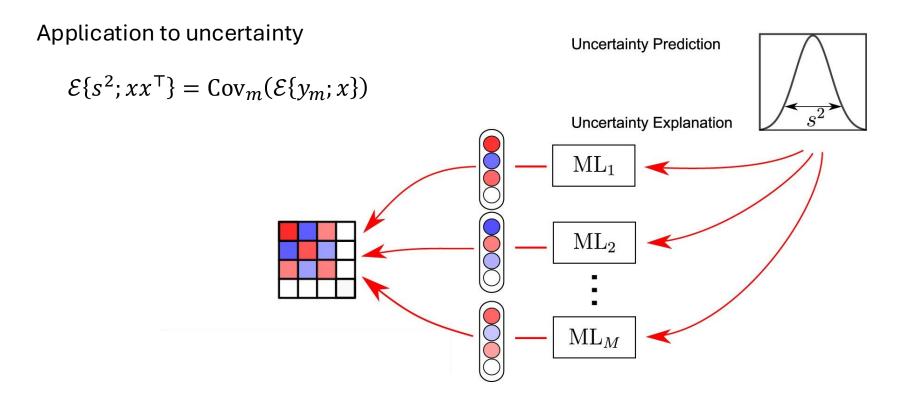
$$\mathcal{E}\lbrace s^2\rbrace = \mathcal{E}\left\lbrace \sum_{m} \sum_{m'} b_{mm'} y_{m} y_{m'} \right\rbrace = \sum_{i} \sum_{j} b_{mm'} \mathcal{E}\lbrace y_{m} y_{m'} \rbrace$$

to pairs of features

Explaining Uncertainty

Explanation of products

$$\mathcal{E}\{y_m y_{m'}; x x^{\mathsf{T}}\} = \mathcal{E}\{y_m; x\} \otimes \mathcal{E}\{y_{m'}; x\}$$



Evaluating Explanation Fidelity

$$\mathcal{E}\{s^2\} = \operatorname{Var}_m(\mathcal{E}\{y_m(x)\}) \qquad \qquad \mathcal{E}\{s^2\} = \operatorname{Cov}_m(\mathcal{E}\{y_m(x)\})$$

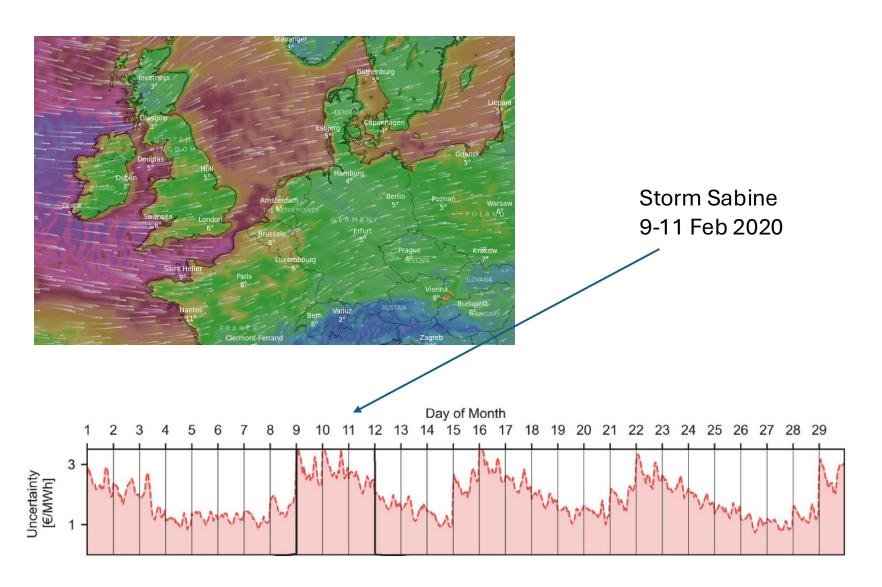
	_					_	
Dataset (d)	Model	CovLRP		LRP	GI	IG	svs
		diag	marg				
Bias Correction (21)	DeepEns	0.352	0.444	0.411	0.559	0.546	0.513
California Housing (8)	DeepEns	0.344	0.370	0.415	0.430	0.394	0.391
EPEX-FR (96)	DeepEns	0.044	0.052	0.106	0.113	0.099	0.062
kin8nm (8)	DeepEns	0.391	0.388	0.462	0.427	0.405	0.386
Seoul Bike Sharing (98)	DeepEns	0.268	0.294	0.293	0.350	0.338	0.329
Wine Quality (11)	DeepEns	0.482	0.471	0.526	0.517	0.500	0.495
YearPredictionMSD (90)	DeepEns	0.155	0.173	0.184	0.264	0.273	0.195
Bias Correction	MCDropout	0.514	0.517	0.568	0.651	0.530	0.672
California Housing	MCDropout	0.674	0.691	0.728	0.812	0.703	0.787
EPEX-FR	MCDropout	0.085	0.091	0.137	0.146	0.119	0.125
kin8nm	MCDropout	0.483	0.486	0.568	0.586	0.498	0.593
Seoul Bike Sharing	MCDropout	0.520	0.590	0.555	0.640	0.568	0.676
Wine Quality	MCDropout	0.661	0.657	0.713	0.729	0.662	0.767
YearPredictionMSD	MCDropout	0.215	0.258	0.253	0.391	0.273	0.403
YearPredictionMSD	DeepEns-5	0.128	0.148	0.155	0.197	0.212	0.153
YearPredictionMSD	DeepEns-10	0.155	0.173	0.184	0.264	0.273	0.195
YearPredictionMSD	DeepEns-20	0.162	0.183	0.247	0.250	0.267	0.218
YearPredictionMSD	DeepEns-40	<u>0.180</u>	0.179	0.235	0.267	0.277	0.213
EPEX-FR	ConvNet	0.085	0.101	0.210	0.159	0.108	0.087
Seoul Bike Sharing	ConvNet	0.231	0.308	0.422	0.331	0.306	0.321

Dropping interaction terms improves explanation robustness.

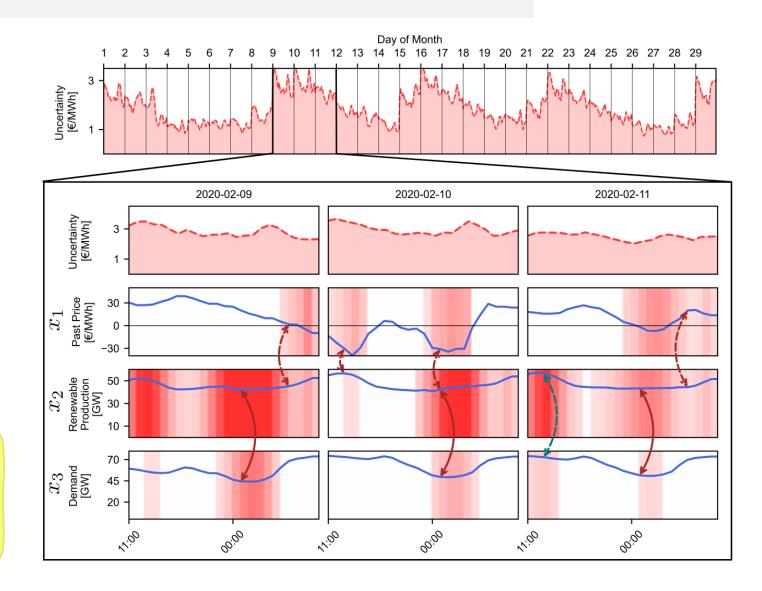
Explaining Uncertainty: Recap

$$\left\{ \begin{array}{c} f \\ \\ \\ \end{array} \right\} \left(\begin{array}{c} x \\ \\ \end{array} \right) = \underbrace{ \begin{array}{c} \\ \\ \end{array} \right\}^2}$$

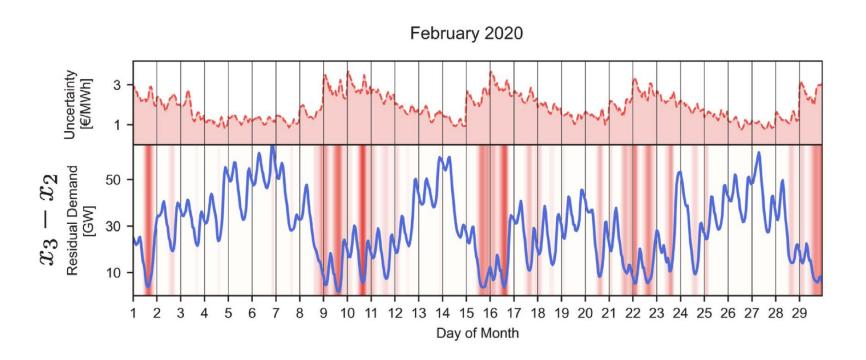
$$\mathcal{E}(s^2; xx^\top) = + +$$



Bley et al. Pattern Recognition 2025



 $x_3 - x_2$ is the "residual demand"



- low residual demand is a clear driver of price uncertainty.
- price uncertainty might further increase due to the growing share of renewables.

Summary

Summary

- With a lot of data, powerful ML models, and with the additional help of deconfounding techniques, many confounding effects can be avoided.
- Recent deep neural networks provide evidence for increased focus on causal features, making observational studies increasingly attractive.
- XAI can adapt to a wide range of ML models and tasks beyond classification (e.g. explaining uncertainty predictions).

Thanks

- P Chormai, J Herrmann, KR Müller, G Montavon. Disentangled explanations of neural network predictions by finding relevant subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 46 (11), 7283-7299, 2024
- S Bender, O Delzer, J Herrmann, HA Marxfeld, KR Müller, G Montavon. Mitigating Clever Hans Strategies in Image Classifiers through Generating Counterexamples. arXiv:2510.17524, 2025
- J Keyl, P Keyl, G Montavon, R Hosch, A Brehmer, L Mochmann, ... Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence. Nature Cancer 6 (2), 307-322, 2025
- P Keyl, M Bockmayr, D Heim, G Dernbach, G Montavon, KR Müller, F Klauschen. Patient-level proteomic network prediction by explainable artificial intelligence NPJ Precision Oncology 6(1):35, 2022
- P Keyl, P Bischoff, G Dernbach, M Bockmayr, R Fritz, D Horst, N Blüthgen, G Montavon, KR Müller, F Klauschen. Single-cell gene regulatory network prediction by explainable AI Nucleic Acids Research, gkac1212, 2023
- F Bley, S Lapuschkin, W Samek, G Montavon. Explaining predictive uncertainty by exposing second-order effects. Pattern Recognition 160, 111171, 2024